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MEMORANDUM

FROM:

cc: S. Nakazato

H. Snyder
D. Yee
R. G. Geimer (12) R. Quilici (VKC)
S. Saunders (VKC)
A. B. Burgess P. Wood (VKC)

SUBJECT: SCAN, A COMPUTER CODE FOR SNAP-8 SYSTEM ANALYSIS WITH

I.

INFLUENCE COEFFICIENT CALCULATION OPTION

INTRODUCTION

A previous memo(l) was updated to include:

1) A more detailed exposition of the iterative method employed
2) A description of the influence coefficient calculation option

3) Recent revisions in equations and coefficients

A digital computer code was written to calculate steady state system

operating conditions for the SNAP-8 Rankine Cycle. The computer code was

written in a general manner to accomplish the objectives of:

1) Allowing for modifications in the performance of individual

system components,

2) Having the capability of solving the set of equations for various

combinations of the variables.,

3) Being easily modified to include additional equations or

information,

Component performance data were obtained from TM 4922:65&1&323(2)

and supplementary information provided by R. G. Geimer. These data were

put in functional form by the method ¢f least squares using the computer

codes

AGMLR and POLYFIT,

(1) Burgess, A. B., '"General Computer Code for SNAP-8 System Analysis'’,

(2)

EAD-328, 27 Decembér 1965
Geimer, R. G., "Analysis of a SNAP-8 EGS Based on Unmodified-1

Component Performance', TM 4922:65-1-323, 3 September 1965
.
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II. COMPUTATIONAL METHOD

A set of 54 functional equations in 69 variables was written to
describe the steady state system performance. When 15 independent variables
are specified, the set can be solved when the functions are "well-behaved'

(i.e., continuous and single-valued).

The resulting set is generally non-linear necessitating an iterative
solution. A variation of the Newton-Rapheson method was chosén for the
iterative scheme. The modification includes a calculation of the vector
norm which furnishes a sufficient condition for convergence of the method

and eliminates potential difficulties with divergence.

The Newton method can be most easily understood by considering the

determination of the root (or zero value) of a function in one variable, f(x).

) T
Fe) |-——— — Aa

» \’x

Expanding the function in a Taylor series about the point Xo,

F(x)-:%?(xo)—‘t-_df(x-—xo)—h,,.—i— J"F (X“Xo)n o
dX dx ni
>(:.')(O X=Xo

If we retain only linear terms:

Fix)= F(x.) + JE|(X=X%,)
d X
X=X,
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Yo + _F00—F(xo)
of
Jx K= X

Geometrically, the Newton method in one-variable estimates the zero of the

or X

|

function based on an extension of the tangent line. Continued iteration
on X gives for the Kth iterate:
() (k=1) _F(KJ $:CK—1)

.
£ I , X(K-t)
x =

The root, Xr, is related to the value of X at each iteration by an error
term, & , or:

(o) (o) (o ), ARY Ik
X/L::x + & = X + € = .... X -+ &

, k
Convergence occurs when the value of the function F( ) approaches zero

as K increases. As convergence is approached:

: (k- (=14
X(k) X/L’;X(K‘)'f"‘e

1<)
é( —> O

The one-dimensional Newton algorithm is then:

(k=1
{ 1<) (k=-1)
<) X =

i

-
Al Cie-1)

or

(K) « (k=1) L €:(c(—i)
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where

(k—\) {: (Kd‘)

L

~{

T (k=1)

<= x

The Newton method can be extended to M functions in N variables
(where M < N). Retaining only the linear term in the Taylor series

expansion, we have:

(o
£ (Yé')'—‘— Fe (XJ)

) N , (o)

Representing the entire set compactly as vectors,

N —
F 2| (X = X)
DX

.F.__

where the bracketed term is an MXN matrix of partials. The matrix can be
augmented to give a square NXN matrix. This is accomplished by writing the

functions Fi , i =M+ 1-—>N asf

Fe= X; —C, =0 | (= M+I—>N

where the CK's, K =1 to N-M, are the values of each of the fixed independun:
variables. The partial matrix is then augmented by inserting a single
value of one in the Xith column, for each of the rows M + 1 through N.
The rest of the entries in each of these rows are zeros.

No simple geometrical significance can be attributed to the N-
dimensional Newton method.

. . . -~ . th |,
Continued iteration on the X vector gives for the K iterate:

(K)

X =

—_— -‘;'(M_‘) + F(K) . ;(K"l)

’DFL
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—

The solution vector x_ (i.e., the values of x,, j = 1'—>N which
r J —

satisfy the given equations) are related by an error vector &, to the valuz

of the x - vector at each iteration. Thus:
~ — —_— c——— I _— —— 5
— o) (o) _ i ) (k> (0
A= X+ e = x0 e, +X"4e

(k)

Convergence occurs when the value of each of the functions Fi
approaches zero as k increases. As convergence is approached:

— — —_— —_— .

(KD

€

The N-dimensional Newton algorithm is then:

— O

“;<k>__—;<K-a> ke
DF;
OXL | s T (ke
P % = X (k~1)
or — = A(K—I) —s i
where

—

_..._A

, —_ )
DX&—} x = x 0

—
The €§krl) vector may be determined by solving the set of linear, simul-

taneous, algebraic equations represented in matrix form as:
— (K1) (K=1) — (1e=1)
oF:

DXJ




EAD-340

—_—

A non-singular solution for the & (k-1)

vector is obtained if the

determinant of T F_“j (y<~.;) is not zero.
OrL

’DX&

The procedure followed was to guess the initial solution vector
(i.e., the zeroth iterate) and then to evaluate all the functionals, Fi's
and the partial derivatives, OFL . The first iterated solution vector

X4 >
is found by solving the resulting set for the é;_(o) vector and then

—
adding this vector to the X(® vector.
P . = a2
x(l) - chh - & (o

The procedure is repeated until the desired convergence is achieved.

A sufficient condition for convergence is that the '"norm" of the
functional vector, f, continually decreases as the iteration proceeds.

The sufficient condition can be written as:

< ’ ¢ (x-1)

where the norm of the vector f is defined for convenience as:

l “F(K) :EnAbSIFL'(K)}

sy
£

=

The matrix of partials was evaluated prior to each iteration by a
numerical procedure:
(K) (K)
(<) ‘ . : L
D E; FoooOky o XHFA%G ouXa) = FC (X, X, x

S AT

= p )
"ax;r Axé

where

AX&CK) = 10 ¥,
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The Newton method is restricted to well-behaved (i.e., continuous and
single valued) functions which are typical of those encountered in engineering
problems. The number of iterations required to reach convergence is
dependent on the initial guess, i.e., the vector x(o) ; but the coavergence
is quadratic for small values of & . '"Modern Numerical Analysis' by

R. Glauz of AGC-Sacramento, discusses the Newton method in great detail.
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III. PREPARATION OF INPUT DATA

The first card is a title card containing alphanumeric symbols in
columns #2 through 72. Column #1 of the title card of the first problem
in a sequence of problems must be left blank. If it is desired to run a
series of problems (i.e., stacked problems) based on the same performance
coefficients, an "R" (for repeat) is punched in column #1 of the second.

and all subsequent title cards.,

The next cards (see Figure 4 for sample input sheets) read in the
performance coefficients, The current format requires seventeen cards
to read in all of the performance coefficients. These cards are followed

by the control card containing the parameters:

NVAR
NFNS ~ the number of fuctionals, M

the number of variables, N

KMAX -~ the maximum number of iterations allowed

ER - the maximum residual of any functional (i.e., the
convergence criterion) ER = 10“3 should be sufficient

APRNT - an option parameter: if APRNT > O the final values,
corresponding to the Eonverged X-vector, of the influence
coefficients are printed out. Only the non-zero
influence coefficients and their identification

numbers are printed,

The control card is followed by an initial guess on each of the
variables., These are punched eight to a card and so require nine cards

for the case of 69 total variables,

The last card consists of the identification number of the fixed
independent variables arranged in ascending numerical order (e.g., 3, 4, 5,
6, 25, etc.). The number of these fixed variables should be NVAR-NFNS.
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The input format is:

Card Format No. of Cards
Title 1246 1
Performance of coefficients 8F9.0 17
Control 313, 27¥9.0 1
Initial guess 8F9.0 9
Fixed independent variables 1613 1

29 Total

When running stacked problems, the performance coefficients are
read in only with the first problem. Subsequent problems then consist
of: a title card, the control card, initial guess on all the variables,

and the identification numbefs of the fixed variables,
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COMPUTER OQUTPUT

The output from each problem consists of:

1)
2)

3)

4)

5)

6)

7)

There
1)

2)

3)

4)

The information on the title card
Print out of the input quantities (performance coefficients,
control parameters, initial guesses, and identification
numbers of fixed independent variables)
The values of the non-zero influence coefficients and their
identification numbers (if APRNT > O on the control card)
A diagram of the system with values of temperatures, pressures,
flow rates, heat transfer rates and output power included
The values of a number of calculated quantities, e.g., XVA,
cycle efficiency, turbine efficiency, etc.
The fipnal values of the variables. These columns of X's arec
headed by the last values of the:

iteration number, K

the norm, TNRM

the maximum residual of any of the functionals, RFMAX
The values of the norm after each iteration to show the

rate of convergence of the problem.
are four possible error messages. These are:

The repeat option on the title card is incorrectly specified.
The message is ''repeat option on title card incorrectly
specified".

The number of iterations exceed KMAX without convergence being
attained. The message is ''iterations loop exceeds KMAX'.

The number of consecutive inner loop iterations (i.e., halving
of the ei's to insure a sufficient condition for convergence)
exceeds five, The message is "halving loop exceeds 5",

The matrix of partials used by the SOLF4 subroutine to
calculate the values of the ei's or to calculate the

influence coefficients is singular (i.e., one of the rows or
columns of the matrix contains only zero entries and a solution
is not obtainable). The message is '"equation set singular

in solve."

~10-
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V. DETAILS OF THE COMPUTER COBE

The computer code package consists of the main program (SCAN)
and four subroutines (RFSUB, PARTL, RFNORM, and SOLF4).

The following sequence (as shown in the flow chart of Figure 3)

is followed in the computer program:

(1)
(2)
(3)

(4)

(5)
(6)
(7
(8)
(9)

(10)

Read in and write out the input data,
Initialize the arrays to zero.

Using the initial x vector calculate the -fi's, their norm,
and the maximum residual of any fi' (The RF(I)'s, TNRM, and
RFMAX)

Test for convergénce if converged go to step (10) if not

converged go to step (5). (Test RFMAX vs ER)
Calculate  the matrix of partials. (The A(L, J)'s)

Solve for the ej'so (The EPS(I)'s)

—n
Reset the matrix of partials and the f vector to zero.

Calculate a new trial solution vector X. (The TX(I)'s)

Calculate the new -fi's, a new trial norm and the maximum
residual of any fi‘ If the new trial norm is less than the old
norm, the trial solution vector is accepted and the outer

iteration loop repeated by returning to step (4).

If the new trial norm is greater than the old norm, the ¢.'s
are halved and the inner iteration loop repeated by returning

to step (8).

Test the influence coefficient option (APRNT). If the influence
coefficients are not required, a series of non-iterative
calculations are completed, a system map is printed out, and

the values of the converged X's printed. If the influence
coefficients are réquired, the partial derivatives are

calculated using the converged X-vector and a series of sets =i
simultaneous equations are solved to give the influence coeffici-
ents. These are printed prior to printing the system map and

the converged X's.
~11-
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A description of each of the subroutines follows:

1) RFSUB « This routine lists the functional equations of the
set to be solved (a total of NFNS equations). The quantities RF(I) in
this routine when called by the main @ ogram are equal to the negative of
each functional, i.e., -fi, and can be used directly as the right hand side
of the matrix. The RFSUB routine is also used in the numerical
calculation of the partials and is called by the subroutine PARTL. When
used in the PARTL routine, the parameter OPTION in the RFSUB call list is
set equal to 2, and the quantity IROW in the call list equals the number
of the functional whose partial is being evaluated. In this case, the RFSUB

routine calculates the quantity TERM which is:
fi(xl’ KpyseoeeX, +'ij,....xn)K i = TIROW

In the main program the parameter OPTION in the RFSUB call list
is set equal to 1.0 and the quantity RF(I) = fi(K) (xl’XZ""°xj""'Xn) is

calculated for I equal 1 to n.

2) RFNORM - This simple routine sums the absolute values of the
RF(I)'s and calculates the absolute value of the largest RF(I). These
quantities, output as TNRM and RFMAX, respectively, are used in the '"norm"

and convergence tests,

3) PARTL - This routine numerically evaluates the matrix

of partials during each iteration. The data key used in this routine
corresponds to tte variables present in the functional equations. The
quantity KEY (Kl’ K2) identifies the non-zero partials by sequentially
listing the number of each function as Kl and the identification number of
each variable appearing in that function as KZ' The dimension of K1 is
NFNS, the number of functionals. The dimension of K2 is the maximum numbe:
of variables appearing in any functional (14 for this set of equations).
When the number of variables in a functional is less than the maximum,

the appropriate number of zeros must be inserted.

-12-



EAD-340

The matrix of partials, A (I, J), is initially set equal to zero.
When the PARTL routine is called, the data key is scanned until a value
of KEY (I, J)igreater than zero is reached. The index J is set equal to
the value of KEY (i.e., the identification number of the variable) and
the variable X(J) is set aside and stored as the quantity XSAVE. The
variable X(J) is then incremented by DX, where DX is one ten=thousandths
of X(J). fhe RFSUB routine is used to initiate the numerical evaluation of

the partial, The partial is then

PART (I,J) = [- TERM + RF(I)]/DX

For each of the bottom rows of the matrix, i.e., rows (NVAR-NFNS + 1)
to NVAR, it is necessary to insert a value of one in the column correspond~
ing to the identification number of that particular variable read in as
a fixed number ;s Tﬁese variables are the input quantities COL(I). COL(I)
is then uséd in PhRTL to identify the appropriate column number.: Each row
in the lower part of the matrix will contain zeros except for a single

value of one.

4) SOLF4 - This routine solves a set of linear, simultaneous
algebraic equations by the method of Gaussian elimination. Normalization
and pivotal condensation are used to minimize round-off error. The routine
is used to solve the iterative correction vector, EPS(I), using the matrix
of partials A(I,J) and the negative of the functionals, RF(I). The routine
is also used to solve for the influence coefficients, CF(I,N2) where the

N2's refer to the identification numbers of the fixed independent variables.

At each stage of the elimination, each row is divided by its
coefficient of latgest absolute value. The equation having the largest
coefficient in the last column (i.e., J = Nth column) is then placed at
the bottom of the set. All other equations are combined with it to

eliminate the coeéfficients of the last variable, e¢_, forming a set of

i
N-1 equations in the remaining variables. The process is repeated until
a triangular set is formed and the back solution is then performed to

calculate edach of the ei's.

The quantity ERR was included in the SOLF4 call list to indicate a

singulat matrix. In this event an error message is written and the iterativc
solution terminated.

- 13-
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VI. DEVELOPMENT OF PROCEDURE FOR CALCULATING INFLUENCE COEFFICIENTS

Assume that N expressions for the N functionals, Fi's ,are

available where:

[}
| et
l
=2

Fi(xl,xz’.cn.x..j,o'oxN’ V*‘l"..d K’...&N'FM 3 i

and Xj,j = 1 » N are the dependent variables

Xn +k k = I==> M are the fixed independent variables,

(In the FORTRAN terminology M = NXTRA, N = NFNS, and M + N = NVAR).
The problem to be solved is the calculation of the influence coefficients,

axj . The total number of influence coefficients will be N x M,

Xy 4k

but many of these are zeros. For the SNAP-8 system equations, N = 54 and

M = 15; so there are 810 possible coefficients describing the system.

Applying the definition of the total derivative, we can write:

ZA‘/'_ DF¢ CJY -+ Z 04?4* d X = 0 NAEN R

.,-‘l rb)(al o l X A ~+ I

or in matrlx form:

DF
L(Dr(’ [JXA} —_— Z 'Dxl;ldeX/‘lfk

N’*ﬂc

kK~
Applying Cramer's rule gives a theoretical solution for the set of

dxj's, if the determinant of the partial matrix is not zero. If we let:

oF§
D = det '[

oX J
[aFIJ
M FPK = det BXJ with the jth column replaced by the
column :E 9 L
M= FED)(h11~tg
then dX, = — 5 D d¥ yyic 5
=1
M .
Since dX; = S~ oOXy CJXN,
j€ =4 —DX”"‘K "-K
Equating the de's gives: 7
oX, _ 25 j = 1—-N
aXN+K D K = 1-M
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The evaluation of all the required determanant makes the

Cramer's rule method too lengthy to be practical.

An alternate procedure is based on inverting the partial matrix.

Let A partial matrix with elements ai,j

<3
fl

A-1 with elements v.,j

[dxéj = L Va,\,][ Z oF: AXN-H’»]\

<=1 N-r)c —t
Or written out as a matrix multiplication:

c‘l}(e' = %(U_J""X"Z ?:H AYN-PK) ) $Ein

ey 9X NI
we can also write:

d%é Z§_-~—— CiXN+K .5:‘—5’6

=1 XNt

80 ’z> )( . B \\:g B h\ éA - S”;;i N
S = =o)L

This procedure was coded using a matrix inversion subroutine

Ym»z

from the Azusa program library (Job #312 by J. Schweiter) based on the
method of rank annihilation. Correct values for influence coefficients
were obtained for a small sample system, but for the larger system of
equations describing SNAP-8 unreasonable answers were obtained. The pdor

answers probably resulted from accumulated inaccuracies in the inversion rourin:.

An alternate approach was coded in which the influence coefficients

were obtained by solving a linear set of N equations M times

Let Fi(xl’XZ""Xj’°"'XN’XN+l""'XN+K’"°°°XN+M) = 0 i=1=N.

Differentiating the functionals with respect to each of the fixed independent
variables, we obtain:
ot OX F,
= ) —= A : + _‘____(‘
S ”Z)X

cl7(
OX
or in matrix form: N+

FL )| oxg [ ot
75&6 FDXN+K \XN+K.

&

N+ K
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When the control card parameter, APRNT, is set equal to a positive
quantity in the input data, the influence coefficients are calculated
upon convergence of the Newton iterative method. The solution vector

(the Xj's) is used by the PARTL subroutine to calculate all the
oF,
==='s, The QOLF4 subroutine is then used M times with each of the M
j s BFi
column vectors - 3
X
X, WK
sil————'s. Each of the non-zero influence coefficients is printed out
MK
with its row and column identification,

substituted in the right side and solved for the

—-16 -
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VII. DEVELOPMENT OF EQUATIONS FOR SYSTEM ANALYSIS

The discussion of the equation development is divided into four

general categories:
A. Pump Motor Assemblies (PMA's) and Loop Pressure Drops

For the primary, mercury, heat rejection and lube coolant
loops, pump performance curves were fit to the least squares c¢riterion as

a function of one variable using the AGMLR code., The performance curves

were taken from R. Geimer's compilation(z) and expressed in the following
units:

Q = volumetric flow in gpm

W = mass flow in lb/hr

AH = head in ft

q = PMA input power in Kw

PF = power factor, n.d.

For the primary loop (indicated by the symbol and subscript N)‘we have:
(1) Q = wN/N1 (N, =367, p. 10, Ref. 2)

. ) '
(2) AHN N2 + N3QN - NAQN (Fig. A-7, Ref. 2)

2 .
3) 4 No + NeQu - N,Q° (Fig. A-7, Ref. 2)

n 5

(4) PF

N, + N

N g ¥ Ngq - N

10qN2 (Fig. A - 8, Ref. 2)
The signs of the performance coefficients (the N's) were chosen so that

they may be input as positive quantities and the sign ignored.

- 2 _
(5) N16AHN = {Nll + le + N13 + N14 + CN} wN + N15
41300

where Nil’ le, and N13 express piping pressure loss coefficients between

the points H to A, C to D, and F to G respectively on Figure [, Ni4 le,
. 2

and CN represent pressure loss coefficients across the reactor, boiler, and

trim orifice respectively. N is the pump pressure rise coefficient

16

~17-
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Similar expressions were obtained for the mercury loop

(subscript H) as:

In equation

Hip

Hy,

Hig

Hiy

Hig

Hie

Hig

Cy

(6) Q, =W/H (H = 6480, p. 11, Ref. 2)
1 aw =‘%*%%*M%f (Fig. A-10, Ref. 2)

- 2 -4 .
@ q, = H5+§6QH + H,Q," (Fig. A-10, Ref. 2)

2 .

(9) PR, = Hg +Hga-H a,° (Fig. A-11, Ref. 2)
l’ 2

(10) HjghH, = jH, +Cp + Hp Wr o+ B8
(\(11750)2 (10000)2

—_—
+ V/T4 + 460 © (1-F) W - Pg + Hy, + H.
i

13
(10) the H coefficients represent:
pipe pressure loss coefficient from boiler to turbine, psi
boiler pressure loss coefficient, psi

. o %, .
turbine nozzle constant (p.7, Ref. 2), 1lb/hr- R*/psi
pipe pressure loss from turbine to condenser, psi
condenser pressure loss, psi
pump pressure rise coefficient, psi/ft head
empirical boiler pressure loss coefficient, psi/OF

trim orifice pressure loss coefficient, psi

The other quantities in Equation (10) are:

Ty

P
wﬁT

ATP

Pg

turbine inlet temperature, °F

liquid carryover fraction, n.d.

total mercury flow rate (vapor plus liquid), 1b/hr
boiler pinch point temperature difference = TB-T2 (Fig.1) bF

turbine exhaust pressure, psia

-18-
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Similar expressions for the heat rejection loop (subscript R) are:
(11) Q =W, /C; (C =407, p. 11, Ref. 2)

= _ 2 .
(12) BHy = C, + C4Q-C, Q" (Fig. A-9 , Ref. 2)

2 ,
(13) qR = C5 + C6QR - C7QR (Fig. A-9, Ref. 2)
2 .
(14) PF, = Cg + Cgay - € oay” (Fig. A-8, Ref. 2)
(15) ¢, BH, = {C + €, +C +C,, C. +C w0 | W’
16°"R 1L, " 212 R s ==, R
(39500) (38100)2 (39300) 2 (NT)

The C coefficients in equation (15) represent:

C11 condenser pressure loss coefficient, psi

C12 pipe pressure loss coefficient condenser to radiator, psi
C13 pipe pressure loss coefficient radiator to trim orifice, psi
C

14  pipe pressure loss coefficient trim orifice to condenser

C radiator pressure loss coefficient, psi

15
C16 pump pressure rise coefficient, psi/oF
CR trim orifice pressure loss coefficiént, psi
NT number of radiator flow tubes (equal flow and pressure drop

assumed in each tube), n.d.

The analysis of the lube-cooler loop (subscript LC) is restricted to

determining pump power requirements using the following equations:

(16) Qo = W/l
2 ,

7 qLC = L2 + L3QLC + L4QLC (Fig. A-12, Ref. 2)
2 .

(18) PF o = Lg + LeQ - L,Q (Fig. A-13, Ref. 2)

Generally the value of WLC will be a fixed input quantity.

~19-
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B. Turbo-Alternator and Loads

A schematic of the energy input and distribution of the output

loads is shown in Figure 2, The alternator output power, L B— is divided
between:

1) vehicle load

2) power required to run cycle

3) excess power dumped back into primary loop
The power dumped back into the primary loop, qPLR’ includes:

qPLMA minimum parasitic load

qS power required for speed control systems stability

qex power in excess of vehicle load requirements (if any)

The power dissipated in running the cycle includes the input power to each

of the loop pumps (qN, q and qLC) plus the power dissipated. in the

n’ IR
control system, qSC'
There are two different possibilities for the vehicle load:

1y The vehicle load is specified as a fixed input quanaity, qLDS’
and the excess power output, qex’ is dumped into the primary loop.

2) The vehicle load is not specified and is calculated from the
cycle state points and performance curves. This case is obtained by
setting qex = 0. The relation between specified load’(iDS’ and actual

load is:

? qLD!
(19) 9., = 9p - Yyps

The expressions for IprR and QTRM are:

(20) qpp = Appy 95 T Gy
(21) qppy = Gyt 9y Gp v Aot g oyt dppy T 9

Expressions for the loop pump power factors were obtained from the previously
mentioned performance curves of Reference 2. The power factor, PFx’ for
the speed control system was obtained as a function of load from Figure

A-16, Ref. 2, using the AGMLR data fitting code:
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_ 2
(22) PP, = Gy + Gy(qge + dppp) - Gy (dgq + dppp)

where the G's are performance coefficients (input quantities).

Then the expressions for total KVA and overall alternator power factor,

PF_, are:
a D) ]
(G + 9 + 9g + qp ¢ + 950 F Gppp + Yypg)
(23) KVA = —_— )
q ]1-PF2 +q 1-PF2 + venotq 1-PF 2 )
\ +(N Vi Fey H H Los VLD
PF) PFH PF
(24) PF, = qTRM/KVA
where PFLD is the power factor for the vehicle load.

An expression for the alternatoer efficiency, 7{A’ was obtained from
performance curve A~5, Reference 2, using the POLYFIT code:
2

25 = - 2 .
(25) nA G, *+ GsZ) = G, Z;° + GgZy + G Z1Z, - G2,

Z1 = PFA - G6

Z,

where

G

= Qppe © ©9

Using the definition of alternator efficiency:

(26) qp = Qpq + appy/T,

where qT is the turbine output power

s is the turbine bearing and seal losses
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C. Expansion in the Turbine

The expression for the turbine efficiency,~7(T, was obtained

from the performance curve A-4 (revised) Reference 2, using POLYFIT to give:

2
27 = - -
(1) My =Gy, - 6152) + G gZ)" + Gp7Z) = GpgZyZy ¥
G 2, 2 2 2 2
19 2y 72y = GyplZy +6yy212) - Gyoly 2
where
Z1 = 100F - G12
z, = U/c:0 - G4
= turbine peripheral speed = .0223 N
= rpm = 12,000
- . . , =
Co theoretical spouting wvelocity \22 gC isen
(u/Co) = 267.5 = 1.196
-1 1
\‘ch Ahisen h4 -.b S5isen

. b , . .
h4 is the enthalpy (Btu/lb) at the turbine inlet and hSise&s the enthalpy

at the turbine exhaust for an isentropic expansion.

The vapor region enthalpy for mercury (ignoring pressure dependency)
can be written as a function of temperature:

(28) h, =130.25 + CPT,

The entropy of an ideal gas is:
= + -
5, =5 +R zn< P1> CP 4n (’I‘l )
Py Ty

Using the ideal gas form and data from the Mollier diagram taken at 1100
and 1400°F and 14 and 280 psia, the expression for the entropy at the turbine
inlet is:
(29) S4 = .1177 - .,0100 ,e,n(:P4 ) + .0250 gn (\Ta + 460 }
280 1560
with S in Btu/1b-°R
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From the definition of turbine efficiency:

(30) hg =h, - NT (h, - by, )

where h5 is the turbine exhaust enthalpy. For a real (i.e., non-isentropic)

expansion. The turbine output power is:

(31) - _
h5 is h4 3413 Uy
MW, (1-F)

The state of the expanded mercury in the condensed region (under the
dome) can be expressed as a function of two thermodynamic variables.
Writing P = Fn (h, s), the region of the Mollier chart between 85 and 100%
quality and between 8 and 30 psia was fitted using POLYFIT to give:

(32) 2 2
2721 7 G28%2 7 G29%1% 4 C30% %
2 22

2
3122 "~ G3p212) - G332; Z)

+ GZGZl +G

where

The pressure drop from the turbine exhaust to the condenser inlet is:

(33) P_.- P, =H

5 6 14

The mercury condenses at constant temperature T6 until the saturated liquid
enthalpy, h6SL’ is reached and subcooling begins. The saturated liquid

enthalpy is a function of one thermodynamic variable:

(34)

hge = 3-286 4n P, + 12.14 for 8 < P

SL 6 < 30

6
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For pressures outside of this range a third or fourth order bolynomial
will give sufficient accuracy. Finally for choked flow through the first

stage nozzle of the turbine (p.7, Ref. 2):

(35) 2, = l T, + 460 ' (1-®) W

3
4) Energy Transfer Between Components and Linking Equations

For the primary loop the overall energy balance is:

9ppr T gy T Iy t 9y T 9

where
Aex = reactor power, kw
qLN = power loss in pipe between the reactor and boiler, kw
Qgy = power transferred across the boiler in the superheat and
latent heat regions, kw
qBL = power transferred across the boiler in the prehgat region, kw.

Writing this as five separate equations where the temperature points are

shown on Figure 1 , we have:

(36)  qp p = WCPy (T-T) /3413
(37) apy = WOy (TH-tG)/3414

(38) qr = WyCPy (TH-TA)/3414
(39) Uy = W CPy (TA - TB)/3414
(40) qp = WP (T - T, Y /3414

‘Using the pinch point definition to connect the primary and the mercury loops:

(41) ATp = TB-T2
Combining the mercury side boiler pressure drop and boiler-turbine pipe pressure

loss equations (pp 5-6, Ref. 2) we have:
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(42) 2 724 h
(B, - B,) = W, T2+, - ,756H17/$ + H AT,
(10000)>

The H coefficients in equation (42) represent:
H11l, H12, Hi8, and ATp are defined for equation (10)
H17 - pressure loss coefficient from boiler inlet to saturation

point (i.e. pinch poiht).

The portion of the power from the mercury pump that is transmitted to the

mercury, qp, was obtained by fitting performance curve A-16, Reference 2:

(43) ap = Gp3 + Gy

Writing the energy balance equations between temperature points as shown
in Figure 1, we have:
(44) qp = W,CP (T, - T7)/3414

(45) 45 = WP (T, - T;)/3413

46) agy = Wy(1-F) [Bh (T,) + OBy (Ty-T,) }/3413

where Ahfg (TZ) = 132,15 - .00825 T2 = latent heat of vaporization Btu/lb
47) Rap - Wﬁ [(1-F) (h5 - h6SL) +(h6SL - CPLT7) J/3413
(48) =

WHCPV (T3 - TQ)/3413

Ln

where qp,n = power transferred across the condenser to the heat rejection

loop and rej:cted to space, kw

qLH = power loss in pipe between the boiler and the turbine, kw
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Empirical relations describing the boiler and condenser performance are
used to link the mercury loop to the primary and heat rejection loops.
Using the notation of Figure 1:

49 T, =T, - 10,

J 6
where o
T6 = G36 -460 = saturation temp, F
Gg4” in Pe

(50) TA = T3 + 20

The overall energy balance for the heat rejection loop is:

(51) Qeap ~ WRCPR (TJ-TI)/3413

POLYFIT was used to fit the radiator heat rejection performance curves

(Figure A-6 and A-6' of Reference 2 in the form:

*
2
52 = = - <
(52) qR q [Rl + R,Z, R3Z + RZ) + RgZ.Z, - RZ,Z,
NT
R7Z - RgZ; z R92 z, ]
where z T
1= T~ Ry
Zy =T3- Ry

A different set of the R coefficients are used for each of the radiator
performance curves to represent the separate curves for the sun and shade
cases.
Using an empirical expression for the condenser terminal temperature
difference:
(53) TI = T7-2

Fihally, for the saturated mercury at the pinch point:
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When the iterative solution of the non-linear set of equations has converged,
additional non-iterative calculations are performed to obtain values of
temperature and pressure at intermediate points around the various loops.
These values are then displayed as output on a schematic cycle diagram

drawn by the computer.

Using Figure A-9 of Reference 2, the curve of required NPSH at the
pump inlet was fitted with AGMLR. The pump inlet pressure of the primary
loop, PD, is

_ . 2
(55) PD —[:NPl NPZQN +NP3QN :I Nig

where NPl’ NP, and NP, are the coefficients obtained from No. A-9, Ref. 2.

2 3

Having determined P_, the calculations are continued around the loop to

D)
the reactor outlet:

(56) By = B+ N N = 3175
(57) B =P, - G (WN/413°°)2

(58) B, =P - N, (Wﬁ/41300)2 N = 6.2
(59) B, =P, - N, (wN/413oo>2 N, = 4.3

The reactor outlet pressure, PH’ is tested to see if the minimum pressure

criterion (Reference 2) of 35 psi is met. If not, PH is set to:
(59a) PH = 35 + PSFN

where PSFN is a safety factor (an input quantity typically 3.psi) and

equations (58) through (55) are recomputed in reverse order.
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If the 35 psi minimum pressure criterion is satisfied, the primary
loop pressure calculations are continued:

60 =P - 2 -
(60) P, = By - Ny (W /41300) N, = 2.2

61 =P - 2 =
(61) . =2, - N5 (/ygi00 N5 = 1.3

The pump inlet pressure of the heat rejection loop, PM’ is:

_r 2 J
(62) = L NP, - NPSQ + NP.Q, €, * PSFR

where PSFR is a safety factor (an input quantity typically 5 psi) and NPA’
NPS»and NP6 are available for use with a curve fit (currently they are set

equal to the same values as NPl’ NP, and NP

9 3 respectively, Having determined
P

the calculations are continued around the loop:

"

(63) Py =P, + C, My Cip = +3525

(64) B, =P - G, (W /38100)°

(65) P, =P, -C, Cy = 2+6

(66) B, =P - C), (W, /39500)° Gy = 4.0

(67) B, =P - C, (wR/38100)2 C,, = 4.6

(68) B, =P - C (wR/39300)2 (130/NT) 2 C g = 18.8
For the mercury loop:

(69) B, =P, +H (wH/11750)2 Hy, = 10.0

(70) P, = P3 + Hy, (WHT/IOOOO)Z + Hig ATP
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71 = -
(71) P, P - Hg
(72 = -
) T, Gy 460
G37 - .@nPS
(73) T, = Gy - 460
G37 - in P6
(74) P9 = P8 + H16 AHHT
It is also assumed that
Py = P,
Ty = T;
Iy = Iy, = T
I, = v = I =71
g = 1,
Ty = T

EAD-340

Finally, the overall cycle efficiency, CEF, and the net turbine work,

QNET, are calculated:

(75) CEF = 100 QLDS/QRX

(76) QNET = QT - QBS
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